Consistency of kernel variance estimators for sums of semiparametric linear processes
نویسندگان
چکیده
Conditions are derived for the consistency of kernel estimators of the variance of a sum of dependent heterogeneous random variables, with a representation as moving averages of near-epoch dependent functions of a mixing process. Fourth moments are not gnerally required. The conditions permit more dependence than a purely nonparametric representation allows, and may be close to those of the best-known conditions for the functional central limit theorem. The class of permitted kernel functions is different from those usually considered, but can approximate most of the usual choices arbitrarily closely, and can be extended to include them subject to a seemingly innocuous extra condition on the random process.
منابع مشابه
Efficient semiparametric estimator for heteroscedastic partially linear models
We study the heteroscedastic partially linear model with an unspecified partial baseline component and a nonparametric variance function. An interesting finding is that the performance of a naive weighted version of the existing estimator could deteriorate when the smooth baseline component is badly estimated. To avoid this, we propose a family of consistent estimators and investigate their asy...
متن کاملUniform Convergence of Weighted Sums of Non- and Semi-parametric Residuals for Estimation and Testing∗
A new uniform expansion is introduced for sums of weighted kernel-based regression residuals from nonparametric or semiparametric models. This result is useful for deriving asymptotic properties of semiparametric estimators and test statistics with data-dependent bandwidth, random trimming, and estimated weights. An extension allows for generated regressors, without requiring the calculation of...
متن کاملA Regression Test of Semiparametric Index Model Specification
This paper presents a simple regression test of parametric and semiparametric index models against more general semiparametric and nonparametric alternative models. The test is based on the regression coefficient of the restricted model residuals on the fitted values of the more general model. A goodness-of-fit interpretation is given to the regression coefficient, and the test is based on the ...
متن کاملBootstrap Bandwidth and Kernel Order Selection for Density Weighted Averages
Abstract: Density weighted average is a nonparametric quantity expressed by expectation of a function of random variables with density weight. It is associated with parametric components of some semiparametric models, and we are concerned with an estimator of this quantity. Asymptotic properties of semiparametric estimators have been studied in econometrics since the end of 1980’s and it is now...
متن کاملA Regression Test of Semiparametric Index Model Specifications
This paper presents a straightforward regression test of parametric and semiparametric index models against more general semiparametric and nonparametric alternative models. The test is based on the regression coefficient of the restricted model residuals on the fitted values of the more general model. A goodness-of-fit interpretation is shown for the regression coefficient, and the test is bas...
متن کامل